Expert judgement for uncertainty quantification

A presentation for COST Action IS1304

aniel Buig Expert judgement for uncertainty quantification

Outline of the presentation

- Introduction
 - About me
 - Background on climate change
 - About the UNEP DTU Partnership (UDP)
- Expert judgement for uncertainty quantification
 - Scenarios to avoid post-hoc dependency analysis
 - Probabilistic vs. deterministic emission forecasts
 - Accountability imperative of uncertainty quantification

About me

About me Background on climate change About UDP

Employment

- 1994-1995: National Board of Waters and the Environment (Helsinki, Finland)
- 1996-2001: COWI Consulting Engineers and Planners (Lyngby, Denmark)
- 2001-2011: United Nations Environment Programme (Paris, France)
- 2011-present: UNEP DTU Partnership (Copenhagen, Denmark)
- Expertise
 - Climate change scenarios, uncertainty, and risk management

United Nations Framework Convention on Climate Change

About me Background on climate change About UDP

- 1992: [the goal is to] "stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system"
- 2009: [Parties recognize] "the scientific view that the increase in global temperature should be below 2 degrees Celsius"
- 2015: "in order to [hold the increase in the global average temperature to well below 2 degrees Celsius], each Party shall prepare, communicate and maintain successive nationally determined contributions it intends to achieve"

Who we are

About me Background on climate change About UDP

- Established in 1991
- About 70 staff from 20 nationalities
- Income (2015): 10.3 million USD
- Four programmes: cleaner energy, climate change mitigation, climate change adaptation, energy efficiency

Daniel Buig Expert judgement for uncertainty quantification

Who we are (continued)

- Not-for-profit
- Applied research
- Collaborating centre of the United Nations Environment Programme

About me Background on climate change About UDP

Scenarios to avoid post-hoc dependency analysis Probabilistic vs. deterministic emission forecasts Accountability imperative of uncertainty quantification

Key drivers of greenhouse-gas emissions

Gross domestic product

Energy prices

Daniel Buig Expert judgement for uncertainty quantification

Scenarios to avoid post-hoc dependency analysis Probabilistic vs. deterministic emission forecasts Accountability imperative of uncertainty quantification

Three macro-economic scenarios

- Interest rates
- Unemployment
- Inflation
- Economic growth in the United States

Daniel Puig Expert judgement for uncertainty quantification

Scenarios to avoid post-hoc dependency analysis Probabilistic vs. deterministic emission forecasts Accountability imperative of uncertainty quantification

Expert judgement elicitation – results for GDP

Expert judgement for uncertainty quantification

niel Puig

Scenarios to avoid post-hoc dependency analysis Probabilistic vs. deterministic emission forecasts Accountability imperative of uncertainty quantification

Expert judgement elicitation – results for GDP

Daniel Puig

Expert judgement for uncertainty quantification

Scenarios to avoid post-hoc dependency analysis Probabilistic vs. deterministic emission forecasts Accountability imperative of uncertainty quantification

Expert judgement elicitation – results for oil prices

Expert judgement for uncertainty quantification

Scenarios to avoid post-hoc dependency analysis Probabilistic vs. deterministic emission forecasts Accountability imperative of uncertainty quantification

Expert judgement elicitation – results for gas prices

Expert judgement for uncertainty quantification

niel Puig

Scenarios to avoid post-hoc dependency analysis **Probabilistic vs. deterministic emission forecasts** Accountability imperative of uncertainty quantifications

Percentile	Gross domestic product annual growth rates (percent)					
	2014-2020	2021-2030				
'Pessimistic' s	'Pessimistic' scenario					
5 th	1.23	1.60				
50 th	2.44	2.79				
95 th	3.20	3.69				
'Neutral' scen	'Neutral' scenario					
5 th	1.79	2.85				
50 th	3.36	3.88				
95 th	4.10	4.50				
'Optimistic' scenario						
5 th	3.85	3.13				
50 th	4.58	4.84				
95 th	5.80	5.90				

Scenarios to avoid post-hoc dependency analysis **Probabilistic vs. deterministic emission forecasts** Accountability imperative of uncertainty quantifications

Percentile	Gross domestic product annual growth rates (percent)		Reference scenario forecasts (MtCO ₂ e)		
	2014-2020	2021-2030	2020	2030	
'Pessimistic' s	scenario				
5 th	1.23	1.60	582	583	
50 th	2.44	2.79	613	694	
95 th	3.20	3.69	633	781	
'Neutral' scenario					
5 th	1.79	2.85	596	663	
50 th	3.36	3.88	638	801	
95 th	4.10	4.50	658	883	
'Optimistic' scenario					
5 th	3.85	3.13	651	790	
50 th	4.58	4.84	671	937	
95 th	5.80	5.90	889	1,102	

Expert judgement for uncertainty quantification

Scenarios to avoid post-hoc dependency analysis **Probabilistic vs. deterministic emission forecasts** Accountability imperative of uncertainty quantificatio

Scenario	Reference scenario forecasts (MtCO ₂ e)		Annual growth rates (percent)		Ratio
	2020	2030	Emissions (2020-2030)	GDP (2021-2030)	
INDC (2015)	632	798	2.4	3.85	0.61
ThreeME pessimistic	613	694	1.2	2.79	0.45
ThreeME neutral	638	801	2.3	3.88	0.59
ThreeME optimistic	671	937	3.4	4.84	0.70

Scenarios to avoid post-hoc dependency analysis Probabilistic vs. deterministic emission forecasts Accountability imperative of uncertainty quantification

Policy process in support of which the scenario was prepared	Assumed annual growth rate for gross domestic product	Analytical method behind the assumption	Reference scenario forecasts (MtCO ₂ e)	
			2020	2030
Fifth National Communication (2012)	2.3 % (2006-2020)	Following "historical trends"	872	996
National Strategy on Climate Change (2013)	3.6 % (2010-2030)	Unspecified	960	1,276
Intended Nationally Determined Contribution (2015)	3.37 % (2014-2020) 3.85 % (2021-2030)	Expert judgement elicitation	792	973

Scenarios to avoid post-hoc dependency analysis Probabilistic vs. deterministic emission forecasts Accountability imperative of uncertainty quantification

Conclusions

- Because they fail to reflect uncertainty, deterministic forecasts are ill-suited for use – especially – in target-setting processes.
- Governments should be held accountable for the appropriateness of the forecasting approach applied.
- The UNFCCC should champion the development of minimum standards for forecasting approaches.

Contact:

dapu@dtu.dk +45 45 33 52 53

Daniel Buig Expert judgement for uncertainty quantification