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Classical Model (1991) 

• In addition to vbls of Interest, Exprts give 
quantiles on seed vbls FROM THEIR FIELD 
[~10] whose values are known post hoc 

• Experts scored wrt calibration (statistical 
accuracy) and informativeness 

• Performance based weights (PW)  (asymptotic 
strictly proper scoring rule) compared with 
Equal Weights (EW) 

• Data sets from ~ 100 studies available 



Combined score (calibration * information) 
Performance & Equal Weights   

pre 2008      post 2008 

In-sample validation 



In sample validation NOT foregone conclusion: 
Jouni and Clemen 1996 





Out of sample validation? 

 



DO  NOT use 
Remove-One-at-a-Time (ROAT) 

• Expert 1 Pheads = 0.8   Expert 2 Pheads = 0.2 

• Weights w1/w2 = likelihood ratio Ex1 / Ex2 

N Heads & N Tails,  

LR = 0.8N × 0.2N / 0.2N × 0.8N  = 1. 

Remove one H, LR = 0.2/0.8 = ¼ = w1/w2 

PDM heads  = (1/5) × 0.8 + (4/5) × 0.2 = 0.32.  

 

Use this to predict removed item? BIAS = 
(0.32/0.5)N 

 

 



Variation of expert weights under one-at-
a-time seed variable exclusion. 
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CROSS Validation 

• Cooke, R.M., (2008) Response to Comments, Special issue on expert 
judgment Reliability Engineering & System Safety,  93, 775-777,  
Available online 12 March 2007. Volume 93, Issue 5, May 2008. 
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• Burgman, M. et al (20??) Intelligence Game, IARPA shoot-out   
 



Out-of-sample Cross Validtion 

• N seed vbls 

• K < N training set; N-K test set 

• WHICH K? 

 

• K small, low power to resolve experts 

• K large, low power to resolve DM 

• K = N-1, ROAT  bias 

• K = N/2…all k-tuples Law of Large Numbers?? 



Eggstaff et al 

• For K = 1….#seeds = N; 

– Initialize on EACH training sets size K 

– Score PW and EW on each test set 

– For given K average PW and EW scores 

• Aggregate over all K by 

– Arithmean of PW-EW [affected by statistical 
power loss as K ↗ ] 

– Geomean of PW/EW [better, dimensionless] 



%(PW > EW) = 73% (Eggstaff et al)  

Smallest to largest # seeds Smallest to largest # seeds 

Study nr                                                                                           Study nr                    



for realizations in [0.05, 0.50, 0.95] 
interquantile intervals 

• DM  P is perfectly calibrated (5%, 45% 45%, 5%) 

• DM P* has prob.(10%, 40%, 40%, 10%) 

• DM P** has prob.(20%, 30%, 30%, 20%) 



Mean p-value of P, P*, P** as function of nr seeds 
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P-values with 5,10,20,50 samples  
for p=(5,45,45,5); p# = (10,40,40,10); p##=(20,30,30,20)  



Choose  1st 10 realizations of P and P*; 
Compute mass functions of P vals for 
all (252) choices of 5 from the 10 

Choose 2nd 10 realizations of P and P*; 
Compute mass functions of P vals for all 
choices of 5 from the 10 

Choose 3rd 10 realizations of P and P*; 
Compute mass functions of P vals for all 
choices of 5 from the 10 



P versus P* 



P versus P** 
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40 times all 5-choose 10 combinations 
E(Pval) = 0.53, E(Pval**)=0.26), % P > P* = 83% 



Combined scores study-wise 
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Over all 29 post 2008 studies 
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In cross validation, a subset and its 
compliment are anti-correlated 
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What does cross validation buy? 
With 5 out of 10, need ~ 10 study replicates to 
distinguish P from P* 



Summary: out of sample effect: 

All studies In-sample 



EPA – UMD:  
Nitrogen run-off Chesapeake Bay (Palmer, Koch, Febria) 

10 experts, 11 seed vbls, 93% PW > EW 



San Diego RWJF 
10 experts, 7 seeds 

17%PW>EW 



Tentative conclusion 

• Default 10 seed vbls  is OK to distinguish good 
and really bad experts, need more for OSV. 

 

• Large training set is more important than large 
test set 

 

THANKS for attending 
 

 



P-value                                                                          Information 
 
 

Combined score 





carp 



Ice Sheets 



Obesity 



Fistula 



DM  P is perfectly calibrated 
DM P** has prob.(30%, 20%, 20%, 30%) for realizations in [0.05, 0.50, 0.95] interquantile intervals 
each study has 5 indep seed vbls.  
How many independent studies do we need to distinguish P and P** with 90% confidence? 



DM  P is perfectly calibrated 
DM P* has prob.(15%, 30%, 30%, 15%) for realizations in [0.05, 0.50, 0.95] interquantile intervals  
DM P** has prob.(30%, 20%, 20%, 30%) for realizations in [0.05, 0.50, 0.95] interquantile intervals 
each study has 10 indep seed vbls.  
How many independent studies do we need to distinguish P, P* and P** with 90% confidence? 



All training sets 



DO NOT standard scorings rules:  



Eggstaff et al 2013  
PW / EW study-wise 

For each K, average PW and EW, take Geomean PW/EW over 
all K= 1 to # seeds. 

PW/EW 

Smallest to largest # seeds 



 
each study has 5 indep seed vbls.  
How many independent studies do we need to distinguish P and P* with 90% confidence? 


