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Need to elicit utility functions and prior beliefs.
What do we actually need from experts?

What can we reasonably get from experts?
Imprecise utility.

Partial belief specification.



Expert opinion in decision making

@ Suitable structures for multi-attribute utility functions.

® Requisite expectations for evaluation of overall expected
utility.

© Elicitation.

@ Imprecise specifications.

© Choosing decisions, sensitivity.
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Consider multi-attribute decision problems.
F & G approach: we build a utility hierarchy.
e Farrow and Goldstein (2006) etc.
o cf. Keeney and Raiffa (1993).
At each child (non-marginal) node, we have mutual utility
independence between utilities combined at that node.

F & G developed the theory for imprecise trade-offs.
Now extended to allow imprecision in marginal utility
functions.

e Hence imprecision in risk aversion.

e Theory for imprecise trade-offs carries over to this.
e See Farrow (2013).
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Imprecise Utility

e Imprecise trade-offs.

e Imprecise marginal utility functions.
e Possible extension: imprecise expectations.

e Lower and upper previsions
o Walley (1991)
e Troffaes and de Cooman (2014).



Life-testing experiment utility hierarchy
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Structure: Utility Hierarchy

e Utility hierarchy
e At each node we have mutual utility independence over
parents.
e This allows a finite parameterisation of the combined utility
function.
e All utilities are on a standard scale.
e Worst outcome considered: U = 0.
e Best outcome considered: U = 1.

This allows us to interpret utilities and trade-offs at all nodes.



Combining utilities at child nodes

e Additive node

5}
U= Za,-U,-
i=1
with > ;aj=1anda; >0 fori=1,...,s.
e Binary node
U=aiU; + a2l + hU1 Us

where 0 < a; <land —a; < h<1-—a;, fori=1,2, and
ai+a+h=1.



Combining utilities at child nodes

e Multiplicative node

5}
U=B" {H[l aF ka,-U,-] = 1}
i=1
with
S
B=]](1+ka)-1
i=1

aa=1,k>—1and, fori=1,...,s, we have
a,->0, ka; > —1.
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Imprecise Utility Tradeoffs

Example: Course Design, Node Q: Module Quality.

Ug = asUs + ay Uy + hgoUs Uy

Choose

Attribute values such that:
Either (A) Us =1, Uy = 0 with probability 1/3
Us =0, Uy = 1 with probability 2/3
Or (B) Us = Uy = 1 with probability «
Us = Uy = 0 with probability 1 — «

(A) preferred when o < 0.37 so ay, > 0.555 — ag/2.
(B) preferred when o > 0.50 so ay < 0.75 — ag/2



Elicitation and feasible set: Binary node

ay

0.0 0.2 0.4 0.6 0.8 1.0

as



Analysis

e Pareto optimality



Analysis

e Pareto optimality
e Select a choice.

e Almost-preference leading to Almost-Pareto sets .
e Farrow and Goldstein (2009).



Analysis

e Pareto optimality
e Select a choice.

e Almost-preference leading to Almost-Pareto sets .
e Farrow and Goldstein (2009).
e Reduce the number of choices to be considered.



Analysis

e Pareto optimality
e Select a choice.

Almost-preference leading to Almost-Pareto sets .
Farrow and Goldstein (2009).

Reduce the number of choices to be considered.
Select a proposed choice d*.



Analysis

e Pareto optimality

e Select a choice.

Almost-preference leading to Almost-Pareto sets .
Farrow and Goldstein (2009).

Reduce the number of choices to be considered.
Select a proposed choice d*.

Identify the nodes and trade-offs responsible for the
elimination of choices.



Analysis

e Pareto optimality
e Select a choice.

Almost-preference leading to Almost-Pareto sets .
Farrow and Goldstein (2009).

Reduce the number of choices to be considered.
Select a proposed choice d*.

Identify the nodes and trade-offs responsible for the
elimination of choices.

e Examine sensitivity

e Farrow and Goldstein (2010).
e Boundary linear utility
e Volumes and distances



Imprecision in risk aversion

e 7 a scalar attribute scaled so that 0 < Z < 1.
e Direct method:
e Determine a range for U(z") where 0 < z* < 1.
e Probability equivalent method.
Offer the decision maker a choice between
® dj : the attribute value corresponding to z = z*, with
certainty, and
® dg : with probability o, the attribute value corresponding to
z =1 and, with probability 1 — «, the attribute value
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The lower utility for z*, U;(z*) is the largest value of « at
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e 7 a scalar attribute scaled so that 0 < Z < 1.
e Direct method:
e Determine a range for U(z") where 0 < z* < 1.
e Probability equivalent method.
Offer the decision maker a choice between
® dj : the attribute value corresponding to z = z*, with
certainty, and
® dg : with probability o, the attribute value corresponding to
z =1 and, with probability 1 — «, the attribute value
corresponding to z = 0.
The lower utility for z*, U;(z*) is the largest value of « at
which the decision maker would choose d4.
The upper utility for z*, U>(z") is the smallest value of « at
which the decision maker would choose dg.

e Repeat this process at a range of values z*.

e Interpolate (linear?). Obtain lower and upper utility functions,
Ui(z) and Us(2).

e These can then be our two basis functions.



Utility

0.2 0.4 0.6 0.8 1.0

0.0

Example — Imprecise marginal utility




Imprecision in risk aversion

e Possibility of additional basis functions to give more flexibility
in shape.

e Eg one which is closer to U;(z) for some of the range of z
and otherwise closer to U»(z).



Partial belief specification: Bayes linear
methods

e Book: Goldstein and Woof (2007)
e Collection of unknowns. Split into two subvectors X, Y.

e Specify means, variances, covariances:

X - my 3 X o Vxx ny
2(v)=(%) w(v)=(% )



Bayes linear methods

CO—



Bayes linear methods

If we observe X:
adjusted mean and variance of Y:

Ey|X(Y ’X:X) = my+ VyXVX;l(X*mX),
V3ﬂ'Y|X(Y [ X=x) = Vy— VyxV><;lVy~
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Bayes linear methods

e Alternative representation

E(X) = mx, Var(X) = Vxx,
Na— my+My|X(X—mX)+Uy‘X,
E(Uyx) = 0, Var(Uy)x)= Vyx-

e So

E( Y) = My,
Var(Y) = MY\X VXXM\ZX = VY|X7
Covar(Y, X)

My |x Vxx.



Bayes linear methods

Va— my+l\//y|X(X—mX)—|—Uy|X,
E(Y) = My,
Var(Y) = MY\X VXXM;,/—|X + VY|Xa
Covar(Y,X) = MyxVxx.



Bayes linear methods

a— my =+ My|X(X — mx) aF UY|X7

E(Y) = My,
Var( Y) = MY\X VXXM;,/—|X + VY|X;
Covar(Y,X) = MyxVxx.
e Same as before if
Myix = VyxVix,

Vyix = Var(Y | X =x) = Vyy — Vyx Vix Vxy.



Bayes linear methods

O



Example: Elicitation — lifetime
distribution

T | A~ Exp(})

What proportion, 7 would fail before time 77

m=1—exp(—A7)
log(1 — 7T):|

1 = log A = log [— -

Three experts give point assessments of 7.
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Example: Three Experts

Common and specific uncertainty factors: Farrow (2003).



Bayes linear kinematics

e More generally, what if we don't get point values which we
treat as observations from experts but information which
causes us to change our mean and variance for 7?7

e For example, we elicit an interval for 7.
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Bayes linear kinematics
Y =m, + My|X(X —my) + Uy|x (1)

e What happens if something causes us to change our mean
and variance for X7

e Does (1) still hold?
e Do My|x and Vy|x stay the same?

e If so: Bayes linear kinematics, Goldstein and Shaw (2004)
(cf probability kinematics: Jeffrey, 1965).

e See also

Wilson and Farrow (2010) — failure times

Gosling et al. (2013)

Wilson and Farrow (2017) — survival model

Wilson and Farrow (in prep) — design



e Are successive belief updates for B=X U Y by Di, D, ...
commutative?

e Goldstein and Shaw (2004): under certain conditions the
commutativity requirement leads to a unique BLK update:

5}
V]._l( ) V(er‘D (B ’ D]_./...’DS) = VB_l(B)+Z Pk(B)
where
P ( ) VaIB|D (B ‘ Dk) VB_l(B)
and

S
Vi Y(B)Egip,....0.(B | D1, ..., Ds) = Vg '(B)E(B)+Y_ Fi(B)
k=1
where

Fk(B) = Vargip, (B | Di)Eg|p,(B | D) — Vg '(B)E(B)



Bayes linear Bayes graphical model

Goldstein and Shaw (2004)
Bayes linear belief structure for B = {Y, Xq,..., X} where
Y, Xi,...,Xs are (vector) unknowns.

Full (Bayesian) probability specification for each of
(X1,D1),...,(Xs, Ds) .

Given X; , D; is conditionally independent of everything in
{Yaxla"'v)gflﬁ)g+17"'1X57Dl:""/Dj*laDjﬁ»lt"'?Ds} .

Use of transformation — Wilson and Farrow (2010).

Non-conjugate updates — Wilson and Farrow (in future).
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Application to Expert Judgement

e Example as before: 7 = Pr(T < 7).

log(1 — W)}

n = log {
-

e Now suppose each expert specifies quartiles.
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Application to Expert Judgement:
Possible method

Fit Beta(a;, b;) distribution to quartiles of Expert /.

Interpret as likelihood:

Li oc 73711 — )bt

Combine with Beta(ag j, b ;) prior for Expert i’s judgement
about 7.

Posterior: Beta(as j, b1 ;) where

ayj=aop;+ai—1, byj=bo;+ b —1

Propagate through Bayes linear Bayes structure using Bayes
linear kinematics.



Application to Expert Judgement:
Possible method
e This is work in progress!

e Should an expert who gives a more precise interval have so
much more effect?

e Possible refinement:

Let
Pi = a; + b;
Use likelihood
Zi 5 ﬂmipi*]-(l _ 7T)mi(lfpi)*l
where

m; = g(nj) < nj = aj + b;.



Summary

Structure for multi-attribute utility.
Imprecision in trade-offs.

Imprecision in marginal utilities.

Identify required expectations.

Include imprecision in expectations (future)?

Moment-based belief elicitation using Bayes linear kinematics
and Bayes linear Bayes models — probability distributions not
fully specified.
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