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Harnessing the wisdom of the crowd to forecast 

world events 

 

 IARPA created the ACE Program to dramatically enhance the 
accuracy, precision, and timeliness of intelligence forecasts 

 Development of advanced techniques that elicit, weight, and 
combine judgments  

 Five university-based teams enter the 2011-2015  tournament (GJP 
eliminated the other 4 teams after the second year)  

 Each team submitted forecasts each day for each question, using 
methods of its choice  

 IARPA has posed over 500 questions for the last 4 years: 



Wisdom of the crowd 

Collective intelligence 
◦ Average responses 

◦ Diminish individual errors 

◦ Knowledgeable and diverse 

◦ Better than or equal to: 
 Average individual 

 Randomly selected individual 

 

Sir Francis Galton’s 

ox 
Truth 

(b) (c) (a) 

# of 

Judges 

Adapted from: Larrick, Mannes and Soll 

(2012) 

Weight of ox 
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Aggregation of judgment 

 Methods for aggregation  

◦ Behavioral (e.g., jury and committee) 

◦ Markets (e.g., prediction markets) 

◦ Mathematical 

 Bayesian models 

 Weighting models 

 Bases for weights 

◦ Past performance 

◦ Test performance (Cooke) 
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Identifying  experts 
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Contribution:  10 - 9  = 1 

Contribution: 
• Measure the expertise that the judge 

brings to the group. 

• Aggregation of judge’s impact on the 

group performance (Score) across all 

items (i). 



The Aggregation Model 

PGit = A (Pjit) Group’s aggregate forecast: Forecast of judge (j) for event (i) at 

time (t) 

Aggregation function 

Re-calculate the group’s forecast, excluding j: P(G - j)it 

Merit score of the group : SGit = f (PGit)   Merit function (e.g. Brier score) 

Judge’s average contribution : Cjt = Σ Cijt / Ij All Ij items  j answers at t 

Cjit = SGit - S(G - j)it Judge’s contribution to the group item i at time t: 

Cjt,  

• reflect the relative expertise of the various judges in the context of 

the group   

• can be positive, negative or 0  

• can vary over time as more items are being forecasted 



 

 Budescu and Chen (2015) proposed using a weighted aggregate 
of all positive contributors.  

◦  wjt, are scaled such that all wjt ≥ 0, and Σ wjt = 1.  

◦  PGi(t + 1) = A(wjt, Pji(t + 1)) for item i at time (t+1) 

 

 CWM model:  

◦ weights are proportional to the contribution scores 

◦ only judges with positive contributions are used.  

◦  wjt = 0 if  Cjt ≤ 0, and  wjt = (Cjt  / ΣCjt )  if Cjt > 0.  

 

Contribution Weighted Model 

Item2 Item3 ItemnItem1

1)  Weight forecast of new item

2)  Add Score of new item to compute weights

...



Study 1: Geo-political forecasting 

tournament 
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Item/event 

Probabilistic 

judgment 

• Binary  

• Ordered multinomial 

• Unordered multinomial 

• Conditional 



Experimental design 

 Expertise (training & teaming) 

 

 

 

 Facilitation (professional coaches) 

Period1 No Training Training 

Individual Ind-NT (157) Ind-T (148) 

Team Team-NT (123) Team-T (96) 

Period 2 No Training Training Facilitation 

Individual Ind-NT (116) Ind-T (105) 

Team Team-NF 

(126) 

Team-F (80) 



Data collection 

 Data from Jun’12-Jun’13 and from Jun’13-Jun’14 

 Collect forecasts from voluntary judges. 

 Items from international business, economy, military, 

policy, politics, etc. 

 Judges answer items based on their interest (about 

20% of items). We use those who answered ≥ 20 

items 

 Score (0-100), where 75 score = 0.5 probability 

 



CWM compare to alternative 

models 
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Models  Description 

UWM Unweighted mean of judges with 20 or more 

items  

BWM Weighted mean based on past Scores of judges 

who answered at least 20 items  

 BWM was cross-validated.  



CWM beats all models in Period 1 

 

Conditions 

Independents  Teams 

 (Ind-NT)  (Ind-T)  (Team-NT)  (Team-T) 

Mean Score of CWM 94.08 96.64 95.20 97.23 

Mean Score of UWM 87.98 90.61 90.77 93.12 

Mean Score of BWM 90.69 92.84 93.40 95.20 

Proportion of relative improvement* (PRI) of 

CWM over UWM (in%) 50.72 64.23 48.01 50.82`  

Proportion of items when CWM > UWM (in%) 96.43 98.21 91.07 96.42 

PRI of CWM over BWM (in%) 36.38 53.13 27.25 42.45 

Proportion of items when CWM > BWM (in%) 92.86 96.43 89.28 81.07 

	



Effect of training and team 



CWM beats all models in Period 2 

 

Conditions 

Independents  Teams 

No training 

(Ind-NT) 

Training 

(Ind-T) 

No facilitation 

(Team-NF) 

Facilitation 

(Team-F) 

Mean Score of CWM 93.67 93.33 95.77 95.67 

Mean Score of UWM 89.82 90.67 95.30 95.13 

Mean Score of BWM 91.83 92.38 95.67 95.09 

PRI of CWM over UWM (in%) 37.84 28.51 10.00 11.02 

Proportion of events when CWM > 

UWM (in%) 90.70 84.88 75.58 87.21 

PRI of CWM over BWM (in%) 22.55 12.42 2.18 11.77 

Proportion of events when CWM > 

BWM (in%) 81.40 74.41 67.44 70.93 

	



Effect of facilitation 



Discrimination 



Effect of time 



Robustness: Dishonest forecasters 

* 50 run simulations using Teams form Period 1  



Cost benefit analysis 

Cost function= Items (I) * Judges(J) * Cost (C) 

 

 Experts are costly  

 Training questions require time 

 

Maintain accuracy level  

 

Two scenarios (Ind-T from Period 2, to predict 36 items):  

1. Reduce cost by eliminating less contributing judges  

2. Reduce cost by randomly eliminating judges 

 

Reduce Cost function = (p + (1-p)w) I J C  

(subset J, w, where 0 < w < 1) 

(subset I, p, where 0 < p < 1) 



Cost benefit analysis with top 

contributors 

CWM:  

Top 20 contributors 

25 practice questions 

57% saving  => 95.29 Score 

CWM vs. BWM:  

PRI: 27.22% better than BWM 

SDcwm: 0.59 

SDbwm: 0.91 



Cost benefit analysis with random 

forecasters 

CWM:  

15 contributors 

40 practice questions 

46% saving  => 93.97 Score 

* 50 run simulations  



Summary of contribution 

 Measure of contribution is simple, reliable and useful for 

assessing forecaster’s performance. 

 CWM is a better weighting tool in the aggregation process 

than those built solely on past, individual performance 

(BWM).  

=> weighting people who have knowledge against the 

crowd 

 CWM works best when there is expertise in the crowd: 
training or teaming 

 CWM is robust (time, length of items and dishonest 

forecasters).  

 CWM can reduce the cost of expert judgment. 
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www.goodjudgmentproject.com 
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