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Monitoring volcanic activity
importance of the Mass Eruption Rate (MER)

Precursors to eruption: Earthquakes, ground
deformation, river chemistry, geothermal signals, gas
emission

During eruption: Networks monitoring above +
plume/vent monitoring: Visual observations, radar,
infrasound, electric signals, gas, satellite

Interpretation — estimates of MER: All the above —
strong emphasis on plume height

Advances in all fields in recent years - improved
instrumentation + interpretation models (including
Futurevolc and other recent large projects)

Many volcanic areas of the world are still poorly
monitored with ground-based instruments — potential of
satellite monitoring
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Volcanic eruptions in Iceland in the last 100 years

Red = Explosive Black = Effusive Blue = Subglacial

Year Volcano VEI note style of activity
2014-15 Bardarbunga-Holuhraun 1 (ice) effusive

2011 Grimsvotn 4 ice explosive

2010 Eyjafjallajokull 3 ice explosive/effusive
2004 Grimsvotn 3 ice explosive

2000 Hekla 3 effusive/explosive
1998 Grimsvotn 3 ice explosive

1996 Gjalp (Grimsvotn) 3 ice subglacial-explosive
1991 Hekla 3 effusive/explosive
1983 Grimsvotn 2 ice explosive

1980-81 Hekla 3 effusive/explosive
1975-84 Krafla fires (9 eruptions) 1 effusive

1973 Heimaey 2 effusive/explosive
1970 Hekla 3 effusive/explosive
1963-67 Surtsey 3 ocean explosive/effusive
1961 Askja 2 effusive

1947-48 Hekla 4 effusive/explosive
1938 Gjalp (Grimsvotn) - ice subglacial

1934 Grimsvotn 3 ice explosive

1922-29 Askja (5-6 eruptions) 2 (lake) effusive/explosive
1922 Grimsvotn 3 ice explosive

1918 Katla 4 ice explosive
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Iceland, volcanoes, plate boundary, present long-term monitoring stations. Volcanic
zones: Western Eastern, and Northern (WVZ, EVZ, NVZ).

Most active volcanoes are Grimsvotn (G) and Bardarbunga (B) under the Vatnajokull
ice cap, Katla (K) under Myrdalsjokull ice cap, and Hekla (H).

Eyjafjallajokull vocano is labelled E
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Eyjafjallajokull 2010
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Challenges in eruption source magnitude determination

Eruption rate — example of Eyjafjallajokull 2010 — first explosive phase

Method MER (kg/s) Reference

Ground sampling 0.5-1x 10° Gudmundsson et al. (2012)
Temporal distribution using

scaled Mastin eq.
Plume model (wind effect) >1 x 107 Bursik et al. (2012)
Plume model (wind effect) 5-9 x 10° Woodhouse et al. (2012)

Mapping of mass of erupted material does not support the high eruption rates
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Challenges in eruption source magnitude determination
Magnitudes of <30 um ash emitted from volcano

Method mass of <30um Reference

Ground sampling + 70 Tg Gudmundsson et al. (2012)
grain size distributions

Satellite derived 8 Tg Stoll et al., (2011)
Schumann et al. (2011)

An order of magnitude discrepancy — work needed to resolve the differences
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FUTUREVOLC approach - better and faster estimates of ongoing
processes — before eruptions and during eruptions

Long term magma tracking

Imminent eruptive activity, eruption onset and early warning

Determination and evolution or eruption source parameters
* In real-time or near real-time provide quantiative estimates of mass

eruption rate
* Fast delivery of composition, grain size distribution and volatile emission
* Explosive, effusive and subglacial eruptions

Distribution and description of eruptive products
* Fast quantitative information on atmospheric ash and sulphur dioxide
concentrations in near and far field
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Futurevolc plan for observations of plumes — determination of MER
In near real time

Fixed location systems: Mobile systems: .
CAM: Cameras S: Radiosondes e e~
EF: Electric field sensors RX: Radar, X-band
GM: Gas monitoring systems
IS: Infrasound Tephra sampler and analyser 66°=
LD: Lightning detection system Mobile fieldlab 1" b ¢ =% T
RC: Radars, C-band Aircraft observations
S: Radiosondes
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Futurevolc: Sensors, types of volcanic eruptions, and contribution to multi-parameter
system for near real time determination of eruption source parameters.

Method/sensor Observed parameters Sub- Data streaming
glacial
(X)

Acoustic waves .
Infrasound X real time
Optical and infrared .
Cameras P X X (X) real time
. Electric field gradients .
Electric field sensors g X (X) real time
. Data on ambient atmosphere .
Radiosondes P X near-real time
fallout magnitude and grain sizes .
Tephra sampler and analyser g & X real time
o . release of volatiles .
Gas monitoring systems X X X real time
microwave reflection signals .
Radars & X real time
. . . electric field spikes .
Lightning detection system P X real time
o magma type, grain sizes .
Mobile field lab. g ype, & X X near-real time
. . visual, optical, infrared, SAR radar .
Aircraft observations P X X X near-real time
.. . . . . calibration of
Empirical plume model calibration plume height — mass discharge X R
. . calibration of
Physics-based plume models plume — vent — mass discharge X
system
. real time / near-
Multi-parameter system All above X X X ./
real time
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Multi-parameter system estimating mass eruption rate

using data from all sensors — the Futurevolc approach
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MER estimates acccording to different methods
Eyjafjallajokull 8-10 May 2010

Hvitanes‘

Comparison of different methods
- bent over plume rising 3-3.5 km
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MER estimates acccording to different methods
Eyjafjallajokull 8-10 May 2010
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MER estimates acccording to different methods
Eyjafjallajokull 8-10 May 2010
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MER estimates acccording to different methods
Eyjafjallajokull 8-10 May 2010
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Present state

Precursors and early warning — advanced
only in well monitored areas

Methods measuring critical parameteres
being tested

MER models based on real-time
observation — in state of development
and calibration

Improvements considerable since 2010




Eyjafjallajokull 2010

Plume height, mass discharge
rate, ice melting and seismic
tremor

Plume height equation (a
scaled version of the Mastin
equation) used for mass
discharge — corrected with
fallout data

Seismic tremor — to first order
— inverse relationship
between mass discharge rate
and strength of seismic
tremor

Tremor apparently mainly
related to effusive eruption
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Eyjafjallajokull 2010:
14-16 April — grain size distribution

If total volume of phase 70 Million m3

<30 um ash: ~35% of total ~35Tg

— 14-16 April
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Challenges in eruption source magnitude determination
Magnitudes of <30 um ash emitted from volcano

Method mass of <30um Reference

Ground sampling + 70 Tg Gudmundsson et al. (2012)
grain size distributions

Satellite derived 8 Tg Stoll et al., (2011)
Schumann et al. (2011)

An order of magnitude discrepancy — work needed to resolve the differences
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