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Two basic questions addressed in this talk:

1. How does uncertainty affect forecasts of volcanic ash 
clouds?

2. How do we maximize the constraints observations 
place on model results and forecasts?

Brief Outline:
I. Properties of volcanic ash clouds
II. Measurements of clouds input to models
III. Process of inversion and error propagation in model results
IV. Forecasting volcanic ash clouds



Properties of volcanic ash clouds in the atmosphere

1. Ash mass is significant only at the eruption column source
i.e. Costa et al, 2013

2. Transport in the atmosphere is passive, as mean settling time for
mean size range in ash clouds is low  (.036 km/hour @ 10 microns)
and wind speeds are typically high (36 – 100 km/hr)

3. Simulations of ash clouds from eruption column source use wind solutions
to obtain wind velocity and satellite data to constrain the source of
volcanic ash clouds

4. As mass flux in a volcanic plume varies with altitude over time, wind shear
changes the  direction of the cloud streaming from the eruption column.

Errors in forecasting volcanic ash clouds are obtained from errors in :
satellite data
wind data
transport models
direct measurements of ash clouds



Cordon Caulle volcano, Chile, 2011

Current  direction 
from source

Past 
direction 
from source

As either wind direction 
or ash altitude changes, 
the direction in which 
the ash cloud moves 
changes…

This information is used 
to train a computer to 
track and forecast an 
ash cloud

Example of cloud changes 
with wind shear



Errors in prior information of an ash cloud source

Data from eruption site

1155 hours
May 6, 2010

1240 hours
May 7th 2010

00h on May 6, 2010

1240 hours
May 7, 2010

brown = ash

Compare observed plume in this 
satellite photo on the left with 
radar measurements above of 
plume height versus time.  Which 
altitudes are supplying the ash 
cloud with ash?

Gudmonsson et al., 2012; Arason et al., 2011



Prior errors inherited from satellite data

• Satellite measurements of 
radiance used to infer the 
presence of an ash cloud and 
its altitude are resolved at 
many small areas above a 
potential ash cloud

• The errors in these data 
constrain model parameters       
by comparison of model clouds 
with actual satellite clouds

• The error in the prior satellite 
data is described with the prior 
distribution at right, with 
variance  
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Likelihood of model parameters      given satellite data             projected onto a 
discretized spherical grid determines the errors     in wind and transport  
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w = wind data
tn = time at step n
sm0ij = mean ij satellite massload
sh0ij = mean ij satellite altitude
ij =  longitude and latitude indices of each cell

The error in winds and the transport of ash is given by the misfit 
between modeled ash clouds and actual satellite-determined 
clouds, and encapsulated into error parameter 

Both and     contribute to uncertainty in forecasting 
ash cloudsh

 



To resolve the uncertainty in satellite data to 
constrain and forecast volcanic ash clouds:

1. Use height and mass (cloud load) measurements of a growing ash cloud 
The error of a likelihood estimation is contained in the Hessian
of the misfit between model clouds and measured clouds

2. Determine the posterior distributions of model parameters
Use Bayes Theorem: For input  parameters     to a transport model 
M given ash cloud observation data D, the sum and product rules of 
probability give Bayes theorem:

3. Use posterior distributions to weight model forecasts of ash clouds
The past success of each combination of inputs to a transport model
in tracking an ash cloud determines its influence in forecasting
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From Bayes theorem, the posterior distribution over the 
model parameters is proportional to the product of 
both the prior and likelihood distributions:

To be used in a forecast the posterior must be normalized by 
the integral over input parameters     , which determines the 
evidence           given by the data constraints:
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The evidence contains the information needed to 
resolve uncertainty in forecasting ash clouds





Posterior distributions of model input data



Posterior distributions for model parameters constrained by 
satellite data typically have one dominant peak during any 3 
hour period, with peaks separated in time

A Laplace approximation for each posterior peak (Denlinger 
et al., 2012) allows rapid evaluation of the evidence integral.

The second derivative       of the posterior is scaled by the 
errors and can be written
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where     is the identity matrix and      is the Hessian of 
the misfit

I H

These errors determine how well satellite data constrain a 
forecast



For linear transport models, with M model parameters, N
satellite observations, and N >> M, the optimal errors may be 
found by taking the derivative of the Hessian of the maximum 
posterior solution with respect to        or        and finding the 
maximum value.
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For  N>>M, the Hessian is a maximum at these average 
variances
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This process is easily automated once satellite data are 
obtained
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Bad error estimates degrade the forecast F, since

contains these errors, in which forecast F gives an 
estimate that ash will be found at location       at some 
future time, where
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The optimal error provides the maximum data constraints and 
ensures that the maximum constraints available from the 
satellite data are used in forecasting future ash clouds 



Example: How do errors affect forecasts of ash clouds 
produced by Eyjafjallajokull volcano from May 5-7th

2010?

Data from eruption site

1155 hours
May 6, 2010

1240 hours
May 7th 2010

00h on May 6, 2010

1240 hours
May 7, 2010

brown = ash

ash

Gudmundsson et al., 2012

We will train the model at 1155 
hours, May 6
Find       and      then make 
forecasts with these errors and 
ones that are much worse
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Result:
Underestimate the 
errors in the satellite, 
wind data, and in model 
transport, and the 
forecast is over 
constrained.

Potential data 
constraints on forecasts 
are lost.  

The forecast is given as black 
contours, whereas actual cloud is 
rust colored.



Result:
Overestimate the errors in 
the satellite, wind data, 
and in model transport, 
and the forecast is under 
constrained.

Data constraints on 
forecasts are weakened 
by too large an error.  

The forecast is given as black contours, 
whereas actual cloud is rust colored.



Result:
The errors in the 
satellite, wind data, 
and in model transport, 
are appropriate for the 
measurements and 
environmental 
conditions.

The forecast accurately 
reflects the constraints 
of the satellite data.

The forecast is given as black 
contours, whereas actual cloud is rust 
colored.



Conclusions
Ash clouds travel more than 50 km from the volcano in a few 
hours or less, and in doing so lose particles > 25 microns. 
Forecasts 24 h or more are for clouds of fine ash particles 
whose settling velocity is negligible to winds.

1. The error inherited from these satellite data directly affect 
forecasts

2. The uncertainty in forecasting is a combination of
these inherited errors, errors in transport models,
and errors in wind

3. A Bayesian framework for making forecasts also provides 
the means to measure misfits of models with data, and 
use this misfit to determine the optimal data constraints
and the optimal forecast.


