ISCH COST Action IS1304

Expert Judgment Network: Bridging the Gap Between Scientific Uncertainty and Evidence-Based Decision Making

Expert Judgment Workshop

Glasgow, August 28, 2015

Modelling consumer preferences with an additive value function: an experimental study

Luis C. Dias⁽¹⁾

(joint work with Gabriela Oliveira and Paula Sarabando)

⁽¹⁾ INESC Coimbra and Faculty of Economics, University of Coimbra, Portugal

Motivation: application

- Transports sector: concerns about energy dependency
 and environmental impacts
- Electric Vehicles (EV) as an alternative to traditional vehicles
- Need to estimate EV adoption and its drivers
- Consumer preferences are the main factor

Motivation: MCDA methodology

- To investigate the potential of UTA-based approaches (additive value model inference) for modelling individual preferences
- To confront two methods to elicit holistic preferences (the inputs for UTA)
 - Five best-worst questions in sets of three alternatives
 - A ranking of a set of seven alternatives

Summary

- Motivation
- Background
- Research questions (outline)
- Preliminary survey and lessons learnt
- Second survey
- Results
- Conclusions and work in progress

Background: Additive value model

(Utilités Additives, Jacquet-Lagrèze and Siskos 1981)

Input: a set of statements concerning preferences
 (*a_i*, *a_j*)∈S ⇔

the consumer has made a holistic comparison of alternatives a_i and a_j and has stated that $a_i > a_j$

Output: additive model characterization by solving

Max ε , Subject to: $V(a_i) \ge V(a_i) + \varepsilon$, $\forall (a_i, a_i) \in S$

 $(\varepsilon^*, the optimal value of this mathematical program, is a strictly positive number iff there exists an additive model compatible able to reproduce the statements$ *S*)

(Utilités Additives, Jacquet-Lagrèze and Siskos 1981)

Inference of weights, with fixed single-attribute values

 $\max_{(w_1,\ldots,w_n)} \varepsilon$

Subject to:

$$\sum_{k=1}^{n} w_k v_k(a_i) - \sum_{k=1}^{n} w_k v_k(a_j) - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S$$

$$\sum_{k=1}^{n} w_k = 1, \quad (w_1, \dots, w_n) \ge 0$$

(Utilités Additives, Jacquet-Lagrèze and Siskos 1981)

Inference of single-attribute values, with fixed weights

 $\max_{(v_{11},\ldots,v_{1m},\ldots,v_{n1},\ldots,v_{nm})}\varepsilon$

Subject to:

$$\begin{split} &\sum_{k=1}^{n} w_k v_{ki} - \sum_{k=1}^{n} w_k v_{kj} - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S \\ &v_{ki} - v_{kj} - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S, k \in \{1, \dots, n\}: a_i \succ_k a_j \\ &v_{ki} - v_{kj} = 0, \quad \forall (a_i, a_j) \in S, k \in \{1, \dots, n\}: a_i \sim_k a_j \\ &v_{ki} \in [0, 1], \quad \forall (a_i, a_j) \in S, k \in \{1, \dots, n\} \end{split}$$

8

(Utilités Additives, Jacquet-Lagrèze and Siskos 1981)

Inference of single-attribute value and weights

$$\max_{\substack{(V_{11},...,V_{1m},...,V_{n1},...,V_{nm})} \varepsilon} S_{ubject to:} \\ \sum_{k=1}^{n} V_{ki} - \sum_{k=1}^{n} V_{kj} - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S \\ V_{ki} - V_{kj} - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S, k \in \{1, ..., n\}: a_i >_k a_j \\ V_{ki} - V_{kj} = 0, \quad \forall (a_i, a_j) \in S, k \in \{1, ..., n\}: a_i \sim_k a_j \\ V_{ki} \in [0,1], \quad \forall (a_i, a_j) \in S, k \in \{1, ..., n\} \\ \sum_{k=1}^{n} V_{k[Best(k)]} = 1, \\ (V_{1[Worst(1)]}, ..., V_{n[Worst(n)]}) = 0$$

Research questions (outline)

Q1: can single-attribute value functions and weights be inferred using a multi-attribute additive model?

Q2: can weights be inferred using a multi-attribute additive model, after eliciting single-attribute value functions?

Q3: can single-attribute value functions be inferred using a multiattribute additive model, after eliciting their weights?

Research questions (outline)

Q4: Do the holistic rankings agree with the elicited MCDA model?

Q5: Do the best-worst answers agree with the answers that would correspond to the elicited MCDA model?

Q6: Are the best-worst answers, before and after MCDA analysis, the same?

Preliminary survey - Data collection

- MCDA conducted by trained analysts (MSc & PhD students)
- Each analyst interacted with several subjects (the potential decision makers), one at a time (convenience sample, n=376)
- Excel template to collect data about the decision maker, his/her vehicle, and preferences (criteria, piecewise linear value functions, scaling weights, final ranking)
- The Excel template also performs the additive model computations

Preliminary survey - Mandatory and elicited values

• Predefined set of alternatives

(Nissan Leaf, Opel Ampera, Renault Fluence 1.5 dci and ZE, Toyota Auris 1.4 D-4D, 1.6 valvematic and 1.8 hybrid, Toyota Prius)

- Free set of criteria (to be elicited and structured)
- Performance table to be built from scratch (data available)
- Value functions to be elicited by direct rating (with instructions)
- Scaling weights to be elicited (with instructions)

Preliminary survey - Lessons learnt

• A few criteria are used more often: initial cost, running costs, design, performance, comfort, brand),

but...

- Affect can be an overwhelming factor ("I would never buy this ugly car", "All my life I had Opel cars", "I would never buy a Toyota", etc.)
- Direct rating for the value function tends to elicit round ordinal scores (e.g. best=10, 2nd best=9, etc.)
- Scaling weights are confused with intuitive importance
- \rightarrow DMs rarely agree with the ranking provided by MCDA

Second survey - Data collection

- MCDA conducted by trained analysts (MSc & PhD students)
- Each analyst interacted with several subjects, one at a time (convenience sample, n=256)
- Excel template to collect data about the decision maker, his/her vehicle, and preferences
- Anonymous vehicles
- Template invites the elicitation of single-attribute value by the bisection technique and elicitation of scaling weights using the swings technique
- The Excel template also performs the additive model computations

Second survey - Mandatory and elicited values

- Mandatory and fixed set of 7 general alternatives (same unnamed brand and model assumed)
- Five mandatory criteria (other may be added)

	Price (€)	Range (Km)	Fuel consumption (€/100km)	CO₂Emissions (g/km)	Privileges
BEV 1	30.000	175	2,4	50	Yes
BEV 2	29.000	175	2,4	50	No
HEV	25.500	2+1200	6,5	110	No
Gasoline	25.700	833	11,2	170	No
Diesel	24.900	1300	6,3	130	No
PHEV 1	28.500	20+1180	4,7	100	Yes
PHEV 2	28.000	20+1180	4,7	100	No

First meeting between analyst and DM

• Stated preferences (best-worst): the DM ranks 3 alternatives in each of 5 questions, e.g.:

	Price	Range	Fuel consumption	CO ₂ Emissions	Privileges	Indicate best and worst
Vehicle A	34000€	800 km	2 €/100km	50 g/km	Yes	
Vehicle B	21000€	800 km	15 €/100km	200 g/km	No	
Vehicle C	26000€	500 km	2 €/100km	50 g/km	Yes	

The alternatives are a fractional factorial design for the following levels:

Criteria	Levels
Price	21,000€/26,000€/30,000€/34,000€
Range	200 km / 500 km / 800 km / 1300 km
Fuel consumption (per 100 km)	2€/7€/15€
CO ₂ emissions (per km)	50 g / 100 g / 200 g
Privileges	Yes / No

Second meeting between analyst and DM

Elicitation of value functions (bisection method suggested)

0,0

€/100km

0.0

g/km

Second meeting between analyst and DM

 Global value as a function of the scaling weights (swing weights recommended but template does not explicitly support this)

Value	Preço	Autonomia	Consumos	Emissões/	Privilégios	crit6	crit7		Vglobal	Ordem/Rank
BEV 1	3,750	0,250	8,500	8,684	10				5,2146053	5
BEV 2	4,375	0,250	8,500	8,684	0				4,9208553	6
HEV	6,563	7,517	5,938	6,429	0				6,2532202	3
Gasolina	6,438	5,665	3,000	1,875	0				4,435675	7
Diesel	6,938	8,333	6,063	5,000	0				6,4202083	2
PHEV 1	4,688	7,500	7,063	7,143	10				6,5315179	1
PHEV 2	5,000	7,500	7,063	7,143	0				6,1346429	4
Atribuição de	Atribuição de coeficientes de escala / Scaling coefficients:									
	Preço	Autonomia	Consumos	Emissões/	Privilégios	crit6	crit7		Soma dos coeficientes	
	0,33	0,22	0,28	0,12	0,05				1	

$$V(a_i) = w_1 v_1(a_i) + w_2 v_2(a_i) + \dots + w_n v_n(a_i)$$

Second meeting between analyst and DM

• Opportunity to revise (stated ranking):

	Ordenação final	(do melhor para o pior) / Final ranking (best to worst
1	Diesel	
2	PHEV 1	
3	HEV	
4	PHEV 2	
5	Gasolina	
6	BEV 1	
7	BEV 2	
	\sim	
	Alterar/change	

• Best-worst stated preference questions are repeated:

	Price	Range	Fuel consumption	CO ₂ Emissions	Privileges	best and worst
Vehicle A	34000€	800 km	2 €/100km	50 g/km	Yes	
Vehicle B	21000€	800 km	15 €/100km	200 g/km	No	
Vehicle C	26000€	500 km	2 €/100km	50 g/km	Yes	

Q1: To which extent can single-attribute value functions and weights be inferred using a multi-attribute additive model?

$$\max_{\substack{(V_{11},...,V_{1m},...,V_{n1},...,V_{nm})} \varepsilon} Subject to: \sum_{k=1}^{n} V_{ki} - \sum_{k=1}^{n} V_{kj} - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S \\ V_{ki} - V_{kj} - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S, k \in \{1, ..., n\}: a_i >_k a_j \\ V_{ki} - V_{kj} = 0, \quad \forall (a_i, a_j) \in S, k \in \{1, ..., n\}: a_i \sim_k a_j \\ V_{ki} \in [0,1], \quad \forall (a_i, a_j) \in S, k \in \{1, ..., n\} \\ \sum_{k=1}^{n} V_{k[Best(k)]} = 1, \\ (V_{1[Worst(1)]}, ..., V_{n[Worst(n)]}) = 0$$

S from stated rankings: 86% successful inferences S from 5 best-worst questions: 75% successful inferences

Q2: To which extent can weights be inferred using a multiattribute additive model, after eliciting single-attribute value functions?

 $\max_{(w_1,\dots,w_n)}\varepsilon$

Results

Subject to:

$$\sum_{k=1}^{n} w_k v_k(a_i) - \sum_{k=1}^{n} w_k v_k(a_j) - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S$$

$$\sum_{k=1}^{n} w_k = 1, \quad (w_1, \dots, w_n) \ge 0$$

S from stated rankings: 77% successful inferences

(vs. 86% if single-attribute values are also not fixed).

Q2: To which extent can weights be inferred using a multiattribute additive model, after eliciting single-attribute value functions?

 $\max_{(w_1,\dots,w_n)}\varepsilon$

Results

Subject to:

$$\sum_{k=1}^{n} w_k v_k(a_i) - \sum_{k=1}^{n} w_k v_k(a_j) - \varepsilon \ge 0, \quad \forall (a_i, a_j) \in S$$

$$\sum_{k=1}^{n} w_k = 1, \quad (w_1, \dots, w_n) \ge 0$$

If a rank order constraint is also imposed (derived from swing weights)

S from stated rankings: only 11% successful inferences

Q3: To which extent can single-attribute value functions be inferred using a multi-attribute additive model, after eliciting their weights?

$$\max_{\substack{(v_{11},\dots,v_{1m},\dots,v_{n1},\dots,v_{nm})}} \varepsilon$$

Subject to:
$$\sum_{k=1}^{n} w_{k} v_{ki} - \sum_{k=1}^{n} w_{k} v_{kj} - \varepsilon \ge 0, \quad \forall (a_{i},a_{j}) \in S$$
$$v_{ki} - v_{kj} - \varepsilon \ge 0, \quad \forall (a_{i},a_{j}) \in S, k \in \{1,\dots,n\}: a_{i} \succ_{k} a_{j}$$
$$v_{ki} - v_{kj} = 0, \quad \forall (a_{i},a_{j}) \in S, k \in \{1,\dots,n\}: a_{i} \sim_{k} a_{j}$$
$$v_{ki} \in [0,1], \quad \forall (a_{i},a_{j}) \in S, k \in \{1,\dots,n\}$$

S from stated rankings: 68% successful inferences

(vs. 86% if single-attribute values are also not fixed).

30% 25% 20%

15% 10% 5%

0.00

0.20

0.40

0.60

0.80

1,00

1,00

before and after MCDA analysis, the same?

Conclusions and work in progress

- The additive value function model is in general an adequate approximation for most of the cases
 - Ranking less inconsistent than multiple choices
- MCDA model elicited in a fairly standard way does not match the holistic preferences
 - Time to revise the model is essential
- The MCDA analysis seems to have influenced the (second set of) multiple choices (learning?)

Conclusions and work in progress

• Three possibilities

To infer all parameters

To infer some parameters and elicit other parameters

To elicit all parameters

- Inferring value functions after eliciting weights did not work well
- Need to support weight elicitation: trade-offs method

