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Initial motivation:
Filling In gaps In a treatment pathway model

The UK National Health Service (NHS) initiated a study to
estimate the benefits of current bowel cancer services in
England and examine costs and benefits of alternative
developments in service provision.

A treatment pathway model was developed that gave the
possible sequences of presentation, diagnosis, treatment,
and outcomes that could be followed by a patient with
suspected colorectal cancer.

Model parameters had to be specified that gave the
probabilities or probability distributions governing the path
taken at each branch of the pathway model.

The majority of information required for the study could be
quantified from available data sources.

For some quantities, however, information was only
available in the background knowledge and experience of
experts.
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In the pathway model, some of the nodes we considered led to
four alternatives. However, our software used logistic
regression to model expert opinion so we separated the node
Into two nodes and had two alternatives from each. The
pairings made sense so that seemed OK. But clearly a
method was needed for situations with more than two
alternatives — we needed a method of quantifying opinion
about multinomial models.



In the multinomial model we have a number of categories.

Each observation will be in exactly one category and expert
opinion must:

 provide an estimate of the probability of each category
 quantify the accuracy of the estimates.

Perhaps we might also want the expert to quantify the
correlation between his or her assessments.

There may also be covariates in the model.

With multivariate problems it seems essential to model the
expert’s opinion by a parametric distribution.

Then the task of quantifying the expert’s opinion reduces to
choosing parameter values that approximate to her opinion.



We will model opinion as

A Dirichlet distribution

A Connor-Mosimann distribution
A Gaussian copula prior

A multinomial logistic prior.



The Dirichlet distribution Is the conjugate prior
distribution for a multinomial model, so that using it
IS easy.

Sampling model: X =(X,...._X.) is multinomially

distributed with k categories and probabilities
P=(»..-.P;) and
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Methods of assessing Dirichlt priors have been proposed.
Dickey et al (1983) give one method of eliciting its parameters:

Estimates of p,,...p, are elicited and reconciled to sum to 1.
Hypothetical data is given to the expert who then revises her
assessments. Small revision gives a large value for N while
large revision gives a small N.

Under the Dirichlet prior, the marginal distribution of each p; is
a beta distribution.

This is exploited in other methods of assessing the Dirichlet
parameters (e.g. Chaloner and Duncan (1987)).



SHELF (Sheffield Elicitation Framework)

O’Hagan and Oakley have software to carry out
elicitation of probability distributions (aimed particularly
at quantifying uncertainty from a group of experts).

The univariate distributions it uses to model opinion are:

Normal, Student t, scaled beta, gamma, log-normal and
log Student-t.

An extension guantifies opinion about a multinomial
distribution by first eliciting marginal (beta) probabilities
for each category, and then reconciling them to form a
Dirichlet distribution.

Offers a choice of assessment tasks for quantifying
probabilities: quartiles, tertiles, fixed interval, roulette.



Categorical variable elicitation
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Elicitation methods we have developed form a package
called PEGS (Probability Elicitation using Graphical

Software).
An example will be used to describe its method of

Quantifying opinion as a Dirichlet distribution.

Example: Misclassification rates of BMI

« A person in Malta gives their height and weight in a
questionnaire and their calculated BMI is in the normal
range.

« Their true BMI is in one of the four categories: normal;
overweight; obese; underweight.

« \We want to question an expert to assess the probabilities
that the person’s true BMI is in each of these categories.
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Median assessment of p for the first category
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Assessing the probability of overweight, given that the
red bar Is correct.
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Assessing the probability for obese, conditional on the red
categories are correct. (The probability for the yellow category
follows automatically.)

M[=E]

File Edit Tools Help

Eliciting median probability of category (Obese)

0.95 1+
0.0 -
0851
080
0.75F
0.70F
065
060
055
0.0
045+
040
0.35F
0.30F
0.251F
cqp- .V mmma=
IRENS
0A0F

0.05 -
0.00

Probabilities

marmal Ciwamweight QObese Lindermeight
Categories

| Nedt= | Help? (78) | 14



"%, Eliciting Quartiles
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Blue lines are the expert’s quartile assessments for the
probability of overweight, conditional that 0.60 is the
probability of normal.
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Quartile assessments for obese (also giving those for
underweight.)
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Put

The assessments relateto p; | p,,...,p,, and
k

p: | pli"'! pr—l D beta(ar’ Z ai)'

i=r+1
We have far more assessments than we need, SO we use a
form of reconciliation to estimate the a's.

We then calculate marginal distributions of the p. and give a
feedback screen to the expert on which he can change the
marginal quartiles.
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Marginal distributions are shown to the expert as feedback.
The expert can make modifications if (s)he wishes.
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A drawback of the Dirichlet prior is that it only has k
parameters — the same as the number of parameters in the
multinomial distribution.

The Connor-Mosimann distribution has almost twice as many
parameters (2k — 2), so that it should be able to capture a
broader range of expert opinion.

The distribution i1s

F(a +b ) bi_1—(a+D;)
T a1 be_;—1
(Pyeeos P) = H{F( )" [Zp,j }pk -

J=I

It is a conjugate prior distribution for a multinomial
distribution.

The same assessments used for the Dirichlet distribution give
the Connor-Mosimann distribution (less reconciliation is
needed). 2



» The Dirichlet distribution fits the expert’s assessments

well, so fitting the more flexible Connor-Mossiman
distribution essentially yields the same distribution.

Assessed Standard Dirichlet Connor-Mossinan
median
E(p) S.D.(p) E(p) S.D.(p)
Normal 0.65 0.653 0.089 0.653 0.089
Overweight 0.20 0.201 0.076 0.201 0.078
Obese 0.09 0.087 0.053 0.087 0.053
Underweight 0.06 0.058 0.044 0.058 0.042
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Nevertheless, the Connor-Mossiman distribution fits the

expert’s assessments better.
The table compares the quartiles of both elicited priors to the
expert’s assessments.

Prob. Lower Quartile Median Upper Quartile
Exprt Dirich  C-M | Exprt Dirich C-M | Exprt Dirich C-M
P 050 054 049 | 065 065 066 | 080 075 0.80
Palpy = 0.65 017 0.14 016 | 0.20 021 021 | 025 0.27 0.25
Pslp,=0.65,p,=0.2 | 0.07  0.05 0.07 | 009 010 009 | 011 013 011
PJp=0.65,p,=0.2 | 0.04  0.02 0.04 | 006 006 006 | 008 010 0.08

The Connor-Mossiman quantiles are closer to the expert’s
assessments.
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Gaussian copula prior distribution

The Connor-Mosimann prior offers a more flexibility means
of modelling expert opinion than the Dirichlet prior, but
perhaps not enough.

A Gaussian copula prior offers greater flexibility. A copula
joins marginal distributions into a joint distribution that has
those marginals.

A Gaussian copula is defined at the point (x,,...,X,) as

CIG,(X):- - G (% )] = D, g {#7[G, ()], 7 {G, (%)]]

Here @, . isthe CDF of a k-variate normal distribution with
Zero means, unit variances, and a correlation matrix R that
reflects the desired dependence structure.
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CIG, (%), G (%] = @y o {#[G,00)],.... 671G, (X1}

We cannot put Y, = ¢ '[G.(p,)] because then > p, =1
would prevent the Y. from being normally distributed.

[Conditional distributions would not have an infinite range —
given, say, the value of Y, implies a value of p, and the

other P; would necessarily be less than 1.]

Instead we define new variables Z,,...,Z, :

Z,=p, Z=—" fori=2,..k-1 Z =1
1-2.p;
j=1
Each Z, has a marginal beta distribution and we put

Y. =[G (2)] fori=1....k
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Median assessment for the second category. The expert is told:
“Assessments are only required for the categories that are
labelled and have blue or orange boxes. Assume that you know
an item falls in one of these categories.
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» Our method for determining the correlation matrix is an
adaptation of a method developed Kadane, Dickey et al (1980).

» Their method can be used in many contexts (they developed it
for linear regression) and determines the variance-covariance
matrix of an MVN or multivariate-t distribution.

* It requires a sequence of conditional assessments to quantify the
expert’s opinions about the relationships between variables.
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Multinomial models that contain covariates

We still have k categories, but now membership probabilities
depend upon covariates.

In medical contexts for instance, age and gender will
typically affect probabilities.

After the multinomial model, the best-known sampling
model for proportions is the logistic normal distribution, in
which proportions are transformed to variables that (by
assumption) follow an MVN distribution (Aitchison, 1986).

This has been considered as a prior (e.g. O’Hagan and
Forster (2004)) but methods of eliciting the prior have not
previously been proposed.

The logistic normal model can be extended to include
covariates (Aitchison, 1986), yielding the multinomial

logistic model (also called the multinomial logit model).
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The sampling model.
=log{p,/(1—py}; Yi=log(p,/p,) fori=2,...k

Covariates: Yi=a +X' [

where ; and g =(f,;,...,5,;)" arethe constantand
regression coefficients for the ith category (1=2,...,K).
This gives

1

1+Zk:exp(ocj +x',8j)’

=1

P (X) = 5 exp(a +X' ) i=2... Kk

1+ Zexp(a +X' 3, )
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Arrange the regression

coefficients as a matrix: B= K%j ..... (QKH.
B, o3

We focus on one row of B at a time, defining new vectors:

a=(a,,...,a)", By =By B ) forr=12,...,m.

Prior distribution:  (a', Byy... .. Bm)' ~ MVN(1,X)
with Zla block-diagonal.

(%, 0 ... 0
s _ 0 2o ;
. . .0
.0 0 2, )
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We fix on one set of covariate values and elicit
assessments for those values.

The first set of values gives the mean and variance of
the vector «.

One of the covariates, age say, IS given a new value.
Assessments for the new set of covariate values give
the mean and variance of the regression coefficients
for age (one regression coefficient for each
category).

This Is repeated for each continuous covariate and
factor level in turn.
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Conditional quartiles are assessed. The expert is asked to treat the
proportions she assessed for the preceding categories as correct.
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Frobahilities
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PEGS (Probability Elicitation Graphical Software)
http://statistics.open.ac.uk/elicitation

Multinomial distribution.

Separate programs (and a single combined program) elicit:
* Dirichlet and Connor-Mossiman priors.

« Dirichlet and Gaussian copula priors.

« MVN prior for multinomial logistic model.

Piecewise-linear GLMs

Program that elicits an MV N prior also quantifies opinion about:
« The error variance in a normal linear model.

* The scale parameter in a gamma GLM.

These are also available in separate stand-alone programs.
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